1. Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms and Application. SIAM, Philadelphia (2007)
2. Computational Intelligence;R Xu,2009
3. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Tkachov, V.M.: Fuzzy clustering data arrays with omitted observations. Int. J. Intell. Syst. Appl. (IJISA) 9(6), 24–32 (2017). https://doi.org/10.5815/ijisa.2017.06.03
4. Zhengbing, H., Bodyanskiy, Y.V., Tyshchenko, O.K., Samitova, V.O.: Possibilistic fuzzy clustering for categorical data arrays based on frequency prototypes and dissimilarity measures. Int. J. Intell. Syst. Appl. (IJISA) 9(5), 55–61 (2017). https://doi.org/10.5815/ijisa.2017.05.07
5. Pelleg, D., Moor, A.: X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of 17th International Conference on Machine Learning, pp. 727–730. Morgan Kaufmann, San Francisco (2000)