Author:
Cunha Tiago,Soares Carlos,de Carvalho André C. P. L. F.
Publisher
Springer International Publishing
Reference28 articles.
1. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)
2. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to Data Mining, 1st edn. Springer Publishing Company, Incorporated, Heidelberg (2009)
3. Dooms, S., De Pessemier, T., Martens, L.: MovieTweetings: a movie rating dataset collected from twitter. In: Workshop on Crowdsourcing and Human Computation for Recommender Systems, CrowdRec at RecSys 2013 (2013)
4. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: MyMediaLite: a free recommender system library. In: ACM Conference on Recommender Systems, pp. 305–308 (2011)
5. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retrieval 4(2), 133–151 (2001)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fresh Content Needs More Attention: Multi-funnel Fresh Content Recommendation;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04
2. Analysis of Meta-Features in the Context of Adaptive Hybrid Recommendation Systems;2022 XVLIII Latin American Computer Conference (CLEI);2022-10-17
3. Anchoring Effect Mitigation for Complex Recommender System Design;HCI International 2022 - Late Breaking Papers. Design, User Experience and Interaction;2022
4. How Useful is Meta-Recommendation? An Empirical Investigation;2021 IEEE International Conference on Big Data (Big Data);2021-12-15
5. MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection;Proceedings of The Web Conference 2020;2020-04-19