Publisher
Springer International Publishing
Reference26 articles.
1. Berzuini, C., Best, N.G., Gilks, W.R., Larizza, C.: Dynamic conditional independence models and Markov Chain Monte Carlo methods. J. Am. Stat. Assoc. 92(440), 1403–1412 (1997)
2. Beskos, A., Papaspiliopoulos, O., Roberts, G., Fearnhead, P.: Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. J. Roy. Stat. Soc. B 68, 1–29 (2006)
3. Bower, J.M., Bolouri, H.: Computational Modelling of Genetic and Biochemical Networks, 2nd edn. Massachusetts Institute of Technology, Cambridge (2001)
4. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)
5. Durham, G.B., Gallant, A.R.: Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econ. Stat. 20(3), 297–338 (2002)