1. Liu, Z., Pan, Q., Dezert, J., Martin, A.: Adaptive imputation of missing values for incomplete pattern classification. Pattern Recogn. 52, 85–95 (2015)
2. Razzaghi, T., Roderick, O., Safro, I., Marko, N.: Fast imbalanced classification of healthcare data with missing values. arXiv preprint
arXiv:1503.06250
(2015)
3. Batista, G.E., Monard, M.C.: An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 17, 519–533 (2003)
4. Zhang, S., Qin, Z., Ling, C.X., Sheng, S.: “Missing is useful”: missing values in cost-sensitive decision trees. IEEE Trans. Knowl. Data Eng. 17, 1689–1693 (2005)
5. Marivate, V.N., Nelwamodo, F.V., Marwala, T.: Autoencoder, principal component analysis and support vector regression for data imputation. arXiv preprint
arXiv:0709.2506
(2007)