1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., May 26–28, 1993, pp. 207–216 (1993)
2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB’94, Proc. of 20th Int. Conf. on Very Large Data Bases, September 12–15, 1994, Santiago de Chile, Chile, pp. 487–499 (1994)
3. Aydin, B., Akkineni, V., Angryk, R.: Time-efficient significance measure for discovering spatiotemporal co-occurrences from data with unbalanced characteristics. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’15, pp. 80:1–80:4. ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2820783.2820871
. URL
http://doi.acm.org/10.1145/2820783.2820871
4. Aydin, B., Akkineni, V., Angryk, R.A.: Mining spatiotemporal co-occurrence patterns in non-relational databases. GeoInformatica 20(4), 801–828 (2016).
https://doi.org/10.1007/s10707-016-0255-0
. URL
http://dx.doi.org/10.1007/s10707-016-0255-0
5. Aydin, B., Kempton, D., Akkineni, V., Gopavaram, S.R., Pillai, K.G., Angryk, R.A.: Spatiotemporal indexing techniques for efficiently mining spatiotemporal co-occurrence patterns. In: 2014 IEEE International Conference on Big Data, Big Data 2014, Washington, DC, USA, October 27–30, 2014, pp. 1–10 (2014)