Author:
Favorskaya M.,Jain Lakhmi C.
Publisher
Springer International Publishing
Reference15 articles.
1. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid- based approaches. IEEE Trans Syst Man Cybern Part C Appl Rev 42(4):463–484
2. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
3. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139
4. Oza NC (2004) Aveboost2: boosting for noisy data. In: Roli F, Kittler J, Windeatt T (eds) Multiple classifier systems. LNCS 3077, Springer, Berlin, pp 31–40
5. Karmaker A, Kwek S (2006) A boosting approach to remove class label noise. Int J Hybrid Intell Syst Hybrid Intell Syst Ensembles 3(3):169–177
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Theory and Practice of Wave Processes Modelling;Innovations in Wave Processes Modelling and Decision Making;2018