Automated Colorectal Tumour Segmentation in DCE-MRI Using Supervoxel Neighbourhood Contrast Characteristics
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-10404-1_76
Reference9 articles.
1. Achanta, R., Shaji, A., Smith, K., Lucchi, A.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2281 (2012)
2. Lecture Notes in Computer Science;M. Bhushan,2013
3. Chen, W., Giger, M.L., Bick, U.: A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images.. Acad. Radiol. 13, 63–72 (2006), doi:10.1016/j.acra.2005.08.035
4. Cifor, A., Risser, L., Chung, D., Anderson, E.M., Schnabel, J.A.: Hybrid feature-based diffeomorphic registration for tumor tracking in 2-d liver ultrasound images. IEEE Trans. Med. Imag. 32, 1647–1656 (2013)
5. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. IEEE Int. Conf. Comput. Vis., 670–677 (2009)
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning;Journal of Signal Processing Systems;2021-11-28
2. U -Net based on Feature Fusion for Rectal Cancer Image Segmentation;2021 11th International Conference on Information Technology in Medicine and Education (ITME);2021-11
3. Assessment of MRI-Based Radiomics in Preoperative T Staging of Rectal Cancer: Comparison between Minimum and Maximum Delineation Methods;BioMed Research International;2021-07-10
4. An improved supervoxel 3D region growing method based on PET/CT multimodal data for segmentation and reconstruction of GGNs;Multimedia Tools and Applications;2019-11-19
5. SLICR super-voxel algorithm for fast, robust quantification of myocardial blood flow by dynamic computed tomography myocardial perfusion imaging;Journal of Medical Imaging;2019-11-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3