1. T. Aubin, Equation de type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, 63–95 (1978)
2. S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic Geometry (Sendai, 1985), ed. by T. Oda. Advanced Studies in Pure Mathematics, vol. 10 (Kinokuniya, 1987), pp. 11–40 (North-Holland, Amsterdam, 1987)
3. R. Berman, S. Boucksom, V. Guedj, A. Zeriahi, A variational approach to complex Monge-Ampère equations. Publ. Math. I.H.E.S. 117, 179–245 (2013)
4. Z. Błocki, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52(6), 1697–1701 (2003)
5. Z. Błocki, A gradient estimate in the Calabi-Yau theorem. Math. Ann. 344, 317–327 (2009)