1. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45, 753–782 (1998)
2. Baburin, A., Della Croce, F., Gimadi, E.K., Glazkov, Y.V., Paschos, V.T.: Approximation algorithms for the 2-peripatetic salesman problem with edge weights 1 and 2. Discret. Appl. Math. 157(9), 1988–1992 (2009)
3. Balas, E.: New classes of efficiently solvable generalized traveling salesman problems. Ann. Oper. Res. 86, 529–558 (1999)
4. de Berg, M., Buchin, K., Jansen, B.M.P., Woeginger, G.: Fine-grained complexity analysis of two classic TSP variants. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 55, pp. 5:1–5:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016).
http://drops.dagstuhl.de/opus/volltexte/2016/6277
5. Burkard, R.E., Deineko, V.G., van Dal, R., van der Veen, J.A.A., Woeginger, G.J.: Well-solvable special cases of the traveling salesman problem: a survey. SIAM Rev. 40(3), 496–546 (1998)