Autoencoder-Based Collaborative Filtering

Author:

Ouyang Yuanxin,Liu Wenqi,Rong Wenge,Xiong Zhang

Publisher

Springer International Publishing

Reference12 articles.

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)

2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems 19, 153 (2007)

3. Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of 14th International Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)

4. Deng, L.: An overview of deep-structured learning for information processing. In: Proceedings of Asian-Pacific Signal and Information Processing–Annual Summit and Conference (2011)

5. Georgiev, K., Nakov, P.: A non-iid framework for collaborative filtering with restricted boltzmann machines. In: Proceedings of the 30th International Conference on Machine Learning, pp. 1148–1156 (2013)

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative adversarial networks for multi-fidelity matrix completion with massive missing entries;Information Fusion;2024-11

2. A Novel Autorec-Based Architecture for Recommendation System;2024 Tenth International Conference on Communications and Electronics (ICCE);2024-07-31

3. Multi-criteria recommendation system based on deep matrix factorization and regression techniques;International Journal of Information Technology;2024-03-26

4. A Generalized Autorec Framework Applying Content-based Information for Resolving Data Sparsity Problem;Proceedings of the 12th International Symposium on Information and Communication Technology;2023-12-07

5. Sentiment based hybrid deep learning for recommender models;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3