Author:
Aryal Sunil,Ting Kai Ming,Haffari Gholamreza
Publisher
Springer International Publishing
Reference16 articles.
1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15: 1–15: 58 (2009)
2. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: Proceedings of the 2000 ACM SIGMOD Conference on Management of Data, pp. 427–438 (2000)
3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of ACM SIGMOD Conference on Management of Data, pp. 93–104 (2000)
4. Liu, F., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceedings of the Eighth IEEE International Conference on Data Mining, (ICDM), pp. 413–422 (2008)
5. Sugiyama, M., Borgwardt, K.M.: Rapid distance-based outlier detection via sampling. In: Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, United States, pp. 467–475 (2013)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Detection of Anomalies and Explanation in Cybersecurity;Communications in Computer and Information Science;2023-11-30
2. Uncertainty Quantification for Machine Learning Output Assurance using Anomaly-based Dataset Dissimilarity Measures;2023 IEEE International Conference On Artificial Intelligence Testing (AITest);2023-07
3. Factor analysis of mixed data for anomaly detection;Statistical Analysis and Data Mining: The ASA Data Science Journal;2022-05-02
4. Anomaly Detection on Health Data;Health Information Science;2022
5. A Comprehensive Survey of Anomaly Detection Algorithms;Annals of Data Science;2021-11-26