1. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Books on Intermediate and Advanced Mathematics (Dover Publications Inc., New York, 1972)
2. S.B. Alexander, I.D. Berg, R.L. Bishop, The Riemannian obstacle problem. Illinois J. Math. 31, 167–184 (1987)
3. C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, G. Scheffer, Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses, vol. 10 (Société Mathématique de France, Paris, 2000)
4. A. Athreya, T. Kolba, J.C. Mattingly, Propagating Lyapunov functions to prove noise–induced stabilization. Electron. J. Probab. 17, 1–38 (2012)
5. D. Bakry, F. Barthe, P. Cattiaux, A. Guillin, A simple proof of the Poincaré inequality for a large class of probability measures. Electron. J. Probab. 13, 60–66 (2008)