A Scalable Dataflow Accelerator for Real Time Onboard Hyperspectral Image Classification
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-30481-6_9
Reference15 articles.
1. Bioucas-Dias, J.M., et al.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 6, 6–36 (2013)
2. Cadambi, S., Igor, D., et al.: A massively parallel FPGA-based coprocessor for support vector machines. In: Proceedings - IEEE Symposium on Field Programmable Custom Computing Machines, FCCM 2009, pp. 115–122 (2009)
3. Gustavo, C., Davis, T., et al.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Sig. Process. Mag. 31(1), 45–54 (2014)
4. Irick, K.M., et al.: A hardware efficient support vector machine architecture for FPGA. In: Proceedings of the 16th IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2008, pp. 304–305 (2008)
5. Khodadadzadeh, M., et al.: A new framework for hyperspectral image classification using multiple spectral and spatial features. In: IEEE Geoscience and Remote Sensing Symposium, pp. 4628–4631 (2014)
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A real-time SVM-based hardware accelerator for hyperspectral images classification in FPGA;Microprocessors and Microsystems;2024-02
2. Modeling the Effect of Interference and Gestation Delay in an Interacting Good Biomass and Bird Population: An Application to Wetland Ecosystem;Thalassas: An International Journal of Marine Sciences;2024-01-16
3. FPGA Acceleration of a Composite Kernel SVM for Hyperspectral Image Classification;IEEE Access;2023
4. An Efficient Classification of Hyperspectral Remotely Sensed Data Using Support Vector Machine;International Journal of Electronics and Telecommunications;2022-04-27
5. Low-Complexity Reconfigurable Computing Based Online One-Class Classification Using High-Resolution Hyperspectral Imagery;2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS);2021-12-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3