Author:
Vu Thanh Nguyen,Nguyen Toan Tan,Phan Trung Hieu,Do Duy Thao,Van Ke Hoang,Le Tuan Dinh
Publisher
Springer International Publishing
Reference12 articles.
1. Symantec Corporation: Detecting Complex Viruses.
https://www.symantec.com/connect/articles/detecting-complex-viruses
. Accessed 10 June 2017
2. AV-TEST Institute: The AV-TEST Security Report, Magdeburg (2016)
3. Schultz, M.G., Eleazar, E., Erez, Z., Salvatore, S.J.: Data mining methods for detection of new malicious executables. In: IEEE Symposium Security and Privacy, S&P 2001, Proceedings, pp. 38–49 (2001)
4. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)
5. Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci. Technol. 21(1), 114–123 (2016)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. uitPEclaFL: A Study on PE Malware Classification Using Federated Learning;2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE);2024-06-19
2. A Computer Virus Detection Method Based on Information from PE Structure of Files Combined with Deep Learning Models;Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications;2020
3. Static PE Malware Detection Using Gradient Boosting Decision Trees Algorithm;Future Data and Security Engineering;2018