1. Alejo, R., Sotoca, J., Valdovinos, R., Casañ, G.: The Multi-Class Imbalance Problem: Cost Functions with Modular and Non-Modular Neural Networks. In: Wang, H., Shen, Y., Huang, T., Zeng, Z. (eds.) The 6th international symposium on neural networks. AISC, vol. 56, pp. 421–431. Springer, Berlin (2009)
2. Baron, G.: Influence of data discretization on efficiency of Bayesian classifier for authorship attribution. Procedia Comput. Sci. 35, 1112–1121 (2014)
3. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
4. LNCS;J Grzymała-Busse,2004
5. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)