1. Andersen, J. L., Flamm, C., Merkle, D., & Stadler, P. F. (2014). Generic strategies for chemical space exploration. International Journal of Computational Biology and Drug Design, 7(2–3), 225–258.
2. Araki, M., Gutteridge, A., Honda, W., Kanehisa, M., & Yamanishi, Y. (2008). Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24(13), i232–i240.
3. Banck, M., Hutchison, G. R., James, C. A., Morley, C., O’Boyle, N. M., & Vandermeersch, T. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33.
4. Barge, L. M., Cardoso, S. S., Cartwright, J. H., Cooper, G. J., Cronin, L., Doloboff, I. J., Escribano, B., Goldstein, R. E., Haudin, F., Jones, D. E., Mackay, A. L., Maselko, J., Pagano, J. J., Pantaleone, J., Russell, M. J., Sainz-Díaz, C. I., Steinbock, O., Stone, D. A., Tanimoto, Y., Thomas, N. L., & Wit, A. D. (2015). From chemical gardens to chemobrionics. Chemical Reviews, 115(16), 8652–8703.
5. Barrett, S. J., & Langdon, W. B. (2006). Advances in the application of machine learning techniques in drug discovery, design and development. In A. Tiwari, R. Roy, J. Knowles, E. Avineri, & K. Dahal (Eds.), Applications of soft computing. Advances in intelligent and soft computing (Vol. 36). Berlin/Heidelberg: Springer.