1. Abdulla, N.A., Ahmed, N.A., Shehab, M.A., Al-Ayyoub, M.: Arabic sentiment analysis: lexicon-based and corpus-based. In: 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–6. IEEE, Amman (2013)
2. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: rapid prototyping for complex data mining tasks. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–940 (2006)
3. Shoukry, A., Rafea, A.: Preprocessing Egyptian dialect tweets for sentiment mining. In: Proceedings of 4th Workshop on Computational Approaches to Arabic Script-Based Languages, San Diego, California, USA, pp. 47–56 (2012)
4. Witten, I.H., Frank, E., Trigg, L., Hall, M., Holmes, G., Cunningham, S.J.: Weka: practical machine learning tools and techniques with Java implementations. In: Seminar, vol. 99, pp. 192–196 (1999)
5. El-Beltagy, S.R., Rafea, A.: An accuracy enhanced light stemmer for Arabic text. ACM Trans. Speech Lang. Process. 7, 2–23 (2011)