Mcti: mixed-criticality task-based isolation

Author:

Hoornaert DenisORCID,Ghaemi Golsana,Bastoni Andrea,Mancuso Renato,Caccamo Marco,Corradi Giulio

Abstract

AbstractThe ever-increasing demand for high performance in the time-critical, low-power embedded domain drives the adoption of powerful but unpredictable, heterogeneous Systems-on-Chip. On these platforms, the main source of unpredictability—the shared memory subsystem—has been widely studied, and several approaches to mitigate undesired effects have been proposed over the years. Among them, performance-counter-based regulation methods have proved particularly successful. Unfortunately, such regulation methods require precise knowledge of each task’s memory consumption and cannot be extended to isolate mixed-criticality tasks running on the same core as the regulation budget is shared. Moreover, the desirable combination of these methodologies with well-known time-isolation techniques—such as server-based reservations—is still an uncharted territory and lacks a precise characterization of possible benefits and limitations. Recognizing the importance of such consolidation for designing predictable real-time systems, we introduce MCTI (Mixed-Criticality Task-based Isolation) as a first initial step in this direction. MCTI is a hardware/software co-design architecture that aims to improve both CPU and memory isolations among tasks with different criticalities even when they share the same CPU. In order to ascertain the correct behavior and distill the benefits of MCTI, we implemented and tested the proposed prototype architecture on a widely available off-the-shelf platform. The evaluation of our prototype shows that (1) MCTI helps shield critical tasks from concurrent non-critical tasks sharing the same memory budget, with only a limited increase in response time being observed, and (2) critical tasks running under memory stress exhibit an average response time close to that achieved when running without memory stress.

Funder

Alexander von Humboldt-Stiftung

Division of Computing and Communication Foundations

Division of Computer and Network Systems

Technische Universität München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3