Optimality Conditions for Mathematical Programs with Orthogonality Type Constraints

Author:

Lämmel S.,Shikhman V.ORCID

Abstract

AbstractWe consider the class of mathematical programs with orthogonality type constraints. Orthogonality type constraints appear by reformulating the sparsity constraint via auxiliary binary variables and relaxing them afterwards. For mathematical programs with orthogonality type constraints a necessary optimality condition in terms of T-stationarity is stated. The justification of T-stationarity is threefold. First, it allows to capture the global structure of mathematical programs with orthogonality type constraints in terms of Morse theory, i. e. deformation and cell-attachment results are established. For that, nondegeneracy for the T-stationary points is introduced and shown to hold generically. Second, we prove that Karush-Kuhn-Tucker points of the Scholtes-type regularization converge to T-stationary points of mathematical programs with orthogonality type constraints. This is done under the tailored linear independence constraint qualification, which turns out to be a generic property too. Third, we show that T-stationarity applied to the relaxation of sparsity constrained nonlinear optimization naturally leads to its M-stationary points. Moreover, we argue that all T-stationary points of this relaxation become degenerate.

Funder

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3