A Note on the Hausdorff Distance Between Norm Balls and Their Linear Maps

Author:

Haddad ShadiORCID,Halder Abhishek

Abstract

AbstractWe consider the problem of computing the (two-sided) Hausdorff distance between the unit $\ell _{p_{1}}$ p 1 and $\ell _{p_{2}}$ p 2 norm balls in finite dimensional Euclidean space for $1 \leq p_{1} < p_{2} \leq \infty $ 1 p 1 < p 2 , and derive a closed-form formula for the same. We also derive a closed-form formula for the Hausdorff distance between the $k_{1}$ k 1 and $k_{2}$ k 2 unit $D$ D -norm balls, which are certain polyhedral norm balls in $d$ d dimensions for $1 \leq k_{1} < k_{2} \leq d$ 1 k 1 < k 2 d . When two different $\ell _{p}$ p norm balls are transformed via a common linear map, we obtain several estimates for the Hausdorff distance between the resulting convex sets. These estimates upper bound the Hausdorff distance or its expectation, depending on whether the linear map is arbitrary or random. We then generalize the developments for the Hausdorff distance between two set-valued integrals obtained by applying a parametric family of linear maps to different $\ell _{p}$ p unit norm balls, and then taking the Minkowski sums of the resulting sets in a limiting sense. To illustrate an application, we show that the problem of computing the Hausdorff distance between the reach sets of a linear dynamical system with different unit norm ball-valued input uncertainties, reduces to this set-valued integral setting.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Analysis

Reference60 articles.

1. Encyclopedia of Mathematics and Its Applications;R. Schneider,2014

2. Hausdorff, F.: Grundzüge der Mengenlehre, vol. 7. von Veit (1914)

3. Hildenbrand, W.: Core and equilibria of a large economy. (psme-5). In: Core and Equilibria of a Large Economy.(PSME-5). Princeton university press (2015)

4. Stoyan, D., Kendall, W.S., Chiu, S.N., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, New York (2013)

5. Serra, J.: Hausdorff distances and interpolations. Comput. Imaging Vision 12, 107–114 (1998)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3