Abstract
AbstractThe paper utilizes Hölder graphical derivatives for characterizing Hölder strong subregularity, isolated calmness and sharp minimum. As applications, we characterize Hölder isolated calmness in linear semi-infinite optimization and Hölder sharp minimizers of some penalty functions for constrained optimization.
Funder
australian research council
h2020 marie skłodowska-curie actions
mineco
hong kong council
national science foundation china
Universidad de Alicante
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Analysis
Reference29 articles.
1. Aragón Artacho, F.J., Geoffroy, M.H.: Metric subregularity of the convex subdifferential in Banach spaces. J. Nonlinear Convex Anal. 15(1), 35–47 (2014)
2. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)
3. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser Boston Inc., Boston (1990)
4. Cánovas, M.J., Dontchev, A.L., López, M.A., Parra, J.: Metric regularity of semi-infinite constraint systems. Math. Program. Ser. B 104 (2–3), 329–346 (2005). https://doi.org/10.1007/s10107-005-0618-z
5. Cánovas, M.J., Dontchev, A.L., López, M.A., Parra, J.: Isolated calmness of solution mappings in convex semi-infinite optimization. J. Math. Anal. Appl. 350(2), 829–837 (2009). https://doi.org/10.1016/j.jmaa.2008.08.005