Funder
Russian Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Analysis
Reference38 articles.
1. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Amer. Math. Soc. 70:5, 709–710 (1964)
2. Levitin, E.S., Polyak, B.T.: Constrained minimization methods. Zh. Vychisl. Mat. Mat. Fiz. 6:5, 787–823 (1966)
3. Polyak, B.T.: Introduction to Optimization. M., Science (1983)
4. Nesterov, Y.u.: Introductory Lectures on Convex Optimization. Springer, Abasic course basic course (2004)
5. Karimi, H., Nutini, J., Schmidt, M.: Linear Convergence of Gradient and Proximal-Gradient Methods under the Polyak-Lojasiewicz Condition Linear Convergence of Gradient and 1 Methods under the 2 Condition. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2016. Lecture Notes in Computer Science, vol. 9851. Springer, Cham (2016)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献