Influence of ground motion duration on ductility demands of reinforced concrete structures

Author:

De Jesus Vega Eric,Montejo Luis A.ORCID

Abstract

Abstract This article investigates the level of influence that strong motion duration may have on the inelastic demand of reinforced concrete structures. Sets of short-duration spectrally equivalent records are generated using as target the response spectrum of an actual long-duration record. The sets of short-duration records are applied to carefully calibrated numerical models of the structures along with the target long-duration records. The input motions are applied in an incremental dynamic analysis fashion, so that the duration effect at different levels of inelastic demand can be investigated. It was found that long-duration records tend to impose larger inelastic demands. However, such influence is difficult to quantify, as it was found to depend on the dynamic properties of the structure, the strength, and stiffness degrading characteristics, the approach used to generate the numerical model and the seismic scenario (target spectrum). While for some scenarios, the dominance of the long record was evident; in other scenarios, the set of short records clearly imposed larger demands than the long record. The detrimental effect of large strong motion durations was mainly observed in relatively rigid structures and poorly detailed flexible structures. The modeling approach was found to play an important role in the perceived effect of duration, with the lumped plasticity multilinear hysteretic models suggesting that the demands from the long records can be up to twice the inferred from distributed plasticity fiber models.

Funder

US NRC

Publisher

Springer Science and Business Media LLC

Subject

Civil and Structural Engineering

Reference23 articles.

1. Aguirre DA, Gaviria CA, Montejo LA (2013) Wavelet-based damage detection in reinforced concrete structures subjected to seismic excitations. J Earthq Eng 17(8):1103–1125

2. Barbosa AR, Ribeiro FL, Neves LA (2017) Influence of earthquake ground-motion duration on damage estimation: application to steel moment resisting frames. Earthq Eng Struct Dyn 46(1):27–49

3. Bravo-Haro MA, Elghazouli AY (2018) Influence of earthquake duration on the response of steel moment frames. Soil Dyn Earthq Eng 115:634–651

4. Building Seismic Safety Council (BSSC) (2015) NEHRP recommended seismic provisions for new buildings and other structures, FEMA P-1050-1, Washington, DC

5. Chandramohan R (2016) Duration of earthquake ground motion: influence on structural collapse risk and integration in design and assessment practice. Ph.D. thesis. Stanford University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3