The pedogenic Walker and Syers model under high atmospheric P deposition rates

Author:

Gallardo AntonioORCID,Fernández-Palacios José María,Bermúdez Alfredo,de Nascimento Lea,Durán Jorge,García-Velázquez Laura,Méndez Javier,Rodríguez Alexandra

Abstract

AbstractThe Walker and Syers model predict that phosphorus (P) availability decreases with time leading to a final stage known as retrogression. We tested the validity of the Walker and Syers model in the Canary Islands, a soil chronosequence ranging from 300 years to 11 million years under recurrent episodes of atmospheric dust-containing P inputs. In particular, we compared our results with those from the volcanic soil chronosequences described in the Hawaii Islands and in Arizona, as they share key biological and/or geological characteristics. In three islands of the Canarian Archipelago, we selected 18 independent sites dominated by mature Pinus canariensis forests and grouped them into six age classes. For each site, soil samples were analyzed for known proxies of soil nitrogen (N), P and cations availability. We also analyzed the P. canariensis needles for N, P and cation contents. We found tendencies similar to those observed in other soil chronosequences: maximum N and P concentrations at intermediate ages and lower P concentrations in the older soils. The nutrient dynamics suggested that the older sites may indeed be approaching the retrogression stage but at lower rates than in other similar chronosequences. Differences from other chronosequences are likely due to the drier Canarian climate, the higher P deposition rates originating from the nearby Sahara Desert and the top soil horizon studied. Our results confirm the validity of the Walker and Syers model for the Canary Islands despite the influence that the high P deposition rates and the seasonally dry climate may have on soil development and P pools in P. canariensis ecosystems.

Funder

Dirección General de Universidades e Investigación

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3