A “toy” model of biogeochemical dynamics on climate gradients

Author:

Vitousek Peter M.ORCID,Bateman Jesse BloomORCID,Chadwick Oliver A.ORCID

Abstract

AbstractWe used a simple “toy” model to aid in the evaluation of the controls of biogeochemical patterns along a climate gradient. The model includes simplified treatments of water balance (precipitation minus Potential Evapotranspiration), leaching, weathering of cation- and P-bearing minerals, N cycling and loss, biomass production, and biological N fixation. We use δ15N as a central integrator of biogeochemical processes, because δ15N integrates multiple pathways of N input, output, and transformation in ecosystems. The model simulated the location and magnitude of a peak in δ15N on a gradient on Kohala Volcano, Hawai‘i which peaked ~  + 14 ‰ in sites receiving ~ 3.5 cm/month average precipitation (− 1300 mm/year water balance); the model also captured a peak in total P in surface soil at intermediate levels of precipitation and water balance, and other biogeochemical features on the gradient. We then applied the model to understanding the patterns of and mechanisms underlying nutrient limitation to net primary production (NPP) and plant biomass on the gradient, testing for the existence and extent of N and P limitation by simulated additions of N and/or P in the model. Both a simulated symbiotic biological N fixer and a simulated non-fixer were limited by P supply across the gradient; the non-fixer was independently limited by N supply in wetter sites. By running the toy model with and without the influence of temperature, we demonstrated that water is the most important factor shaping biogeochemical patterns on this gradient.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3