Degradation increases peat greenhouse gas emissions in undrained tropical peat swamp forests

Author:

Swails ErinORCID,Frolking Steve,Deng Jia,Hergoualc’h Kristell

Abstract

AbstractTropical peat swamp degradation can modify net peat greenhouse gas (GHG) emissions even without drainage. However, current Intergovernmental Panel on Climate Change (IPCC) guidelines do not provide default emission factors (EF) for anthropogenically-degraded undrained organic soils. We reviewed published field measurements of peat GHG fluxes in undrained undegraded and degraded peat swamp forests in Southeast Asia (SEA) and Latin America and the Caribbean (LAC). Degradation without drainage shifted the peat from a net CO2 sink to a source in both SEA (− 2.9 ± 1.8 to 4.1 ± 2.0 Mg CO2–C ha−1 yr−1) and LAC (− 4.3 ± 1.8 to 1.4 ± 2.2 Mg CO2–C ha−1 yr−1). It raised peat CH4 emissions (kg C ha−1 yr−1) in SEA (22.1 ± 13.6 to 32.7 ± 7.8) but decreased them in LAC (218.3 ± 54.2 to 165.0 ± 4.5). Degradation increased peat N2O emissions (kg N ha−1 yr−1) in SEA forests (0.9 ± 0.5 to 4.8 ± 2.3) (limited N2O data). It shifted peat from a net GHG sink to a source in SEA (− 7.9 ± 6.9 to 20.7 ± 7.4 Mg CO2-equivalent ha−1 yr−1) and increased peat GHG emissions in LAC (9.8 ± 9.0 to 24.3 ± 8.2 Mg CO2-equivalent ha−1 yr−1). The large observed increase in net peat GHG emissions in undrained degraded forests compared to undegraded conditions calls for their inclusion as a new class in the IPCC guidelines. As current default IPCC EF for tropical organic soils are based only on data collected in SEA ombrotrophic peatlands, expanded geographic representation and refinement of peat GHG EF by nutrient status are also needed.

Funder

Government of the United States of America

Government of Norway

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3