Abstract
AbstractNitrous oxide (N2O) is the third most important long-lived greenhouse gas and agriculture is the largest source of N2O emissions. Curbing N2O emissions requires understanding influences on the flux and sources of N2O. We measured flux and evaluated microbial sources of N2O using site preference (SP; the intramolecular distribution of 15N in N2O) in flux chambers from a grassland tilling and agricultural fertilization experiments and atmosphere. We identified values greater than that of the average atmosphere to reflect nitrification and/or fungal denitrification and those lower than atmosphere as increased denitrification. Our spectroscopic approach was based on an extensive calibration with 18 standards that yielded SP accuracy and reproducibility of 0.7 ‰ and 1.0 ‰, respectively, without preconcentration. Chamber samples from the tilling experiment taken ~ monthly over a year showed a wide range in N2O flux (0–1.9 g N2O-N ha−1 d−1) and SP (− 1.8 to 25.1 ‰). Flux and SP were not influenced by tilling but responded to sampling date. Large fluxes occurred in October and May in no-till when soils were warm and moist and during a spring thaw, an event likely representing release of N2O accumulated under snow cover. These high fluxes could not be ascribed to a single microbial process as SP differed among chambers. However, the year-long SP and flux data for no-till showed a slight direct relationship suggesting that nitrification increased with flux. The comparative data in till showed an inverse relationship indicating that high flux events are driven by denitrification. Corn (Zea mays) showed high fluxes and SP values indicative of nitrification ~ 4 wk after fertilization with subsequent declines in SP indicating denitrification. Although there was no effect of fertilizer treatment on flux or SP in switchgrass (Panicum virgatum), high fluxes occurred ~ 1 month after fertilization. In both treatments, SP was indicative of denitrification in many instances, but evidence of nitrification/fungal denitrification also prevailed. At 2 m atmospheric N2O SP had a range of 31.1 ‰ and 14.6 ‰ in the grassland tilling and agricultural fertilization experiments, respectively. These data suggest the influence of soil microbial processes on atmospheric N2O and argue against the use of the global average atmospheric SP in isotopic modeling approaches.
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Subject
Earth-Surface Processes,Water Science and Technology,Environmental Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献