Unearthing the legacy of wildfires: post fire pyrogenic carbon and soil carbon persistence across complex Pacific Northwest watersheds

Author:

Peter-Contesse HayleyORCID,Lajtha KateORCID,Boettcher AronORCID,O’Kelley Regina,Mayedo Amy

Abstract

AbstractWildfires have the potential to dramatically alter the carbon (C) storage potential, ecological function, and the fundamental mechanisms that control the C balance of Pacific Northwest (PNW) forested ecosystems. In this study, we explored how wildfire influences processes that control soil C stabilization and the consequent soil C persistence, and the role of previous fire history in determining soil C fire response dynamics. We collected mineral soils at four depth increments from burned (low, moderate, and high soil burn severity classes) and unburned areas and surveyed coarse woody debris (CWD) in sites within the footprint of the 2020 Holiday Farm Fire and in surrounding Willamette National Forest and the H.J. Andrews Experimental Forest. We found few changes in overall soil C pools as a function of fire severity; we instead found that unburned sites contained high levels of pyrogenic C (PyC) that were commensurate with PyC concentrations in the high severity burn sites—pointing to the high background rate of fire in these ecosystems. An analysis of historical fire events lends additional support, where increasing fire count is loosely correlated with increasing PyC concentration. An unexpected finding was that PyC concentration was lower in low soil burn severity sites than in control sites, which we attribute to fundamental ecological differences in regions that repeatedly burn at high severity compared with those that burn at low severity. Our CWD analysis showed that high mean fire return interval (decades between fire events) was strongly correlated with low annual CWD accumulation rate; whereas areas that burn frequently had a high annual CWD accumulation rate. Within the first year postfire, trends in soil density fractions demonstrated no significant response to fire for the mineral-associated organic matter pool but slight increases in the particulate pool with increasing soil burn severity—likely a function of increased charcoal additions. Overall, our results suggest that these PNW forest soils display complex responses to wildfire with feedbacks between CWD pools that provide varying fuel loads and a mosaic fire regime across the landscape. Microclimate and historic fire events are likely important determinants of soil C persistence in these systems.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Postfire extracellular enzyme activity in a temperate montane forest;Soil Science Society of America Journal;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3