Reduced accrual of mineral-associated organic matter after two years of enhanced rock weathering in cropland soils, though no net losses of soil organic carbon

Author:

Sokol Noah W.ORCID,Sohng Jaeeun,Moreland Kimber,Slessarev Eric,Goertzen Heath,Schmidt Radomir,Samaddar Sandipan,Holzer Iris,Almaraz Maya,Geoghegan Emily,Houlton Benjamin,Montañez Isabel,Pett-Ridge Jennifer,Scow Kate

Abstract

AbstractEnhanced rock weathering (ERW), the application of crushed silicate rock to soil, can remove atmospheric carbon dioxide by converting it to (bi) carbonate ions or solid carbonate minerals. However, few studies have empirically evaluated ERW in field settings. A critical question remains as to whether additions of crushed rock might positively or negatively affect soil organic matter (SOM)—Earth’s largest terrestrial organic carbon (C) pool and a massive reservoir of organic nitrogen (N). Here, in three irrigated cropland field trials in California, USA, we investigated the effect of crushed meta-basalt rock additions on different pools of soil organic carbon and nitrogen (i.e., mineral-associated organic matter, MAOM, and particulate organic matter, POM), active microbial biomass, and microbial community composition. After 2 years of crushed rock additions, MAOM stocks were lower in the upper surface soil (0–10 cm) of plots with crushed rock compared to unamended control plots. At the 2 sites where baseline pre-treatment data were available, neither total SOC nor SON decreased over the 2 years of study in plots with crushed rock or unamended control plots. However, the accrual rate of MAOM-C and MAOM-N at 0–10 cm was lower in plots with crushed rock vs. unamended controls. Before ERW is deployed at large scales, our results suggest that field trials should assess the effects of crushed rock on SOM pools, especially over multi-year time scales and in different environmental contexts, to accurately assess changes in net C and understand the mechanisms driving interactions between ERW and SOM cycling.

Funder

Lawrence Livermore National Laboratory

California Strategic Growth Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3