Post-fire soil emissions of nitric oxide (NO) and nitrous oxide (N2O) across global ecosystems: a review

Author:

Stephens Elizah Z.ORCID,Homyak Peter M.ORCID

Abstract

AbstractWildfires may increase soil emissions of trace nitrogen (N) gases like nitric oxide (NO) and nitrous oxide (N2O) by changing soil physicochemical conditions and altering microbial processes like nitrification and denitrification. When 34 studies were synthesized, we found a significant increase in both NO and N2O emissions up to 1 year post-fire across studies spanning ecosystems globally. However, when fluxes were separated by ecosystem type, we found that individual ecosystem types responded uniquely to fire. Forest soils tended to emit more N2O after fire, but there was no significant effect on NO. Shrubland soils showed significant increases in both NO and N2O emissions after fires; often with extremely large but short-lived NO pulses occurring immediately after fire. Grassland NO emissions increased after fire, but the size of this effect was small relative to shrublands. N2O emissions from burned grasslands were highly variable with no significant effect. To better understand the variation in responses to fire across global ecosystems, more consistent measurements of variables recognized as important controls on soil fluxes of NO and N2O (e.g., N cycling rates, soil water content, pH, and substrate availability) are needed across studies. We also suggest that fire-specific elements like burn severity, microbial community succession, and the presence of char be considered by future studies. Our synthesis suggests that fires can exacerbate ecosystem N loss long after they burn, increasing soil emissions of NO and N2O with implications for ecosystem N loss, climate, and regional air quality as wildfires increase globally.

Funder

California Department of Forestry and Fire Protection

National Science Foundation

U.S. Department of Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3