Nitrous oxide emissions in proportion to nitrification in moist temperate forests

Author:

Fan Shaoyan,Yoh MuneokiORCID

Abstract

AbstractChronic elevated nitrogen deposition has increased nitrogen availability in many forest ecosystems globally, and this phenomenon has been suggested to increase soil nitrification. Although it is believed that increased nitrogen availability would also increase nitrous oxide (N2O) emissions from forest ecosystems, its impact on N2O flux is poorly known. In this study, 3-years monitoring of N2O emissions was performed in a forested watershed receiving elevated nitrogen deposition and located in the suburbs of Tokyo, Japan. In addition, a comparative field survey was carried out in nine temperate forest sites with varying nitrogen availabilities. In the intensively studied forest site showing typical nitrogen saturation, the average annual N2O emissions from the whole watershed were estimated to be 0.88 kg N ha−1 year−1, comparable to the highest observed levels for temperate forests except for some very high emission sites in Europe. Although no correlation was found for humid spots with WFPS > 60%, a clear positive correlation was noted between N2O flux and net nitrification rate in situ for plots with water-filled pore space (WFPS) < 60%. The N2O flux varied across nine forest sites almost in proportional to the stream water NO3 concentration in the watershed that ranged from 0.14 to 1.64 mg N/L. We conclude that N2O emissions are related to nitrification in moist temperate forest, which may be associated with the magnitude of nitrogen saturation.

Funder

Grants-in-Aid for Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3