Comparison of the transformation of organic matter flux through a raised bog and a blanket bog

Author:

Glatzel StephanORCID,Worrall FredORCID,Boothroyd Ian M.ORCID,Heckman KatherineORCID

Abstract

AbstractThis study has proposed that organic matter transfer and transformation into and through a peatland is dominated by preferential loss of carbohydrates and the retention of lignin-like molecules. Here we used elemental analysis and thermogravimetric analysis to analyse the biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter fluxes sampled from a continental raised bog in comparison a maritime blanket bog. The macromolecular composition and thermodynamic analysis showed that in the raised bog there had been little or no transformation of the organic matter and the accumulation was rapid with comparatively little transformation with only 13% loss of cellulose by 1 m depth compared to 92% removal of cellulosic material in the blanket bog. The lack of transformation is reflected in a difference in long term carbon accumulation rates between raised and blanket bog sites. We propose that raised bogs, with their lack of a stream outfall, have high stable water tables that mean the pore water become thermodynamically closed and reactions cease higher in the peat profile than in a blanket bog where sloping sites mean a frequent flushing of pore water and discharge of water leading to fluctuating water tables, flushing of reaction products and pore spaces remaining open.

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3