Nitrogen fixation associated with epiphytes on the seagrass Zostera marina in a temperate lagoon with moderate to high nitrogen loads

Author:

Marino RoxanneORCID,Hayn MelanieORCID,Howarth Robert W.ORCID,Giblin Anne E.ORCID,McGlathery Karen J.,Berg PeterORCID

Abstract

AbstractAs part of a long-term study on the effects of nitrogen (N) loading in a shallow temperate lagoon, we measured rates of N2 fixation associated with seagrass (Zostera marina) epiphytes during the summer from 2005 to 2019, at two sites along a gradient from where high N groundwater enters the system (denoted SH) to a more well-flushed outer harbor (OH). The data presented here are the first such long-term N2 fixation estimates for any seagrass system and one of the very few reported for the phyllosphere in a temperate system. Mean daily N2 fixation was estimated from light and dark measurements using the acetylene reduction assay intercalibrated using both incorporation of 15N2 into biomass and a novel application of the N2:Ar method. Surprisingly, despite a large inorganic N input from a N-contaminated groundwater plume, epiphytic N2 fixation rates were moderately to very high for a seagrass system (OH site 14-year mean of 0.94 mmol N m−2 d−1), with the highest rates (2.6 mmol N m−2 d−1) measured at the more N-loaded eutrophic site (SH) where dissolved inorganic N was higher and soluble reactive phosphorus was lower than in the better-flushed OH. Over 95% of the total N2 fixation measured was in the light, suggesting the importance of cyanobacteria in the epiphyte assemblages. We observed large inter-annual variation both within and across the two study sites (range from 0.1 to 2.6 mmol N fixed m−2 d−1), which we suggest is in part related to climatic variation. We estimate that input from phyllosphere N2 fixation over the study period contributes on average an additional 20% to the total daily N load per area within the seagrass meadow.

Funder

National Science Foundation

Woods Hole Sea Grant, Woods Hole Oceanographic Institution

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3