Microsites and early litter decomposition patterns in the soil and forest canopy at regional scale

Author:

Aguilar-Cruz YonatanORCID,García-Franco José G.,Zotz GerhardORCID

Abstract

AbstractPlant litter decomposition is a key ecological process that is mostly studied at the forest floor. However, decomposition generally starts in the canopy. In this study, we evaluated the effect of litter composition and climate on the initial phase of decomposition in the soil and two contrasting types of canopy microsites along an elevational gradient (0–2200 m a.s.l.). To this end, we incubated standard material composed by green (fast decomposing) and rooibos (slow decomposing) tea bags for three months. Tea bags were placed in soil (buried at 5 cm) and in the canopy at ca. 5 m above the ground in “micro-wetlands” (tank bromeliads) and dry crown microsites (branches). Along the elevational gradient, green tea decomposed faster than rooibos tea in all microsites and forests. Mass loss for both tea types was lowest on branches at all sites, except for green tea in a wet forest where decomposition did not significantly differ among microsites. In wet forests, decomposition did not differ between bromeliads and soil, while in a dry forest, decomposition was faster in bromeliads. We found that the effects of climatic variables [monthly average temperature (TEMP) and total precipitation (PREC) for the incubation months] on decomposition differed between microsites. Along the elevational gradient, the mass loss in soil was positively correlated with TEMP but not with PREC, whereas on branches, mass loss was negatively correlated with TEMP and positively correlated with PREC. Unlike on branches, mass loss in bromeliads slightly decreased with PREC and increased with TEMP. Our study shows that microsite conditions interact with climate (TEMP and PREC) leading to differences in the general decomposition patterns in the forest canopy.

Funder

CONACYT

Deutscher Akademischer Austauschdienst

Heinz Neumüller Stiftung

Carl von Ossietzky Universität Oldenburg

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3