The importance of microbiota and terrestrial inflows in controlling seston C:N:P:O:Si:Ca:Mn:Mg:Fe:K:Na:Cl:S:Cu:Zn stoichiometry of a deep coastal fjord

Author:

Erga Svein Rune,Heldal Mikal,Prestegard Siv,Norland Svein,Tsagaraki Tatiana,Storesund Julia E.ORCID

Abstract

AbstractComprehensive fjord-systems represent major extensions of the coastline and are therefore important transfer zones of materials from land to ocean. Despite increased terrestrial inflows to fjords due to climate changes, we know little about the effects on the ecosystem, especially biogeochemical cycling. We present novel data on spatiotemporal variations of seston multielement stoichiometry in the Sognefjord, the second longest (204 km) and deepest (1308 m) fjord in the world, relative to environmental conditions and microbiota. Concentration of major elements was highest in the upper brackish layer whereas trace metals and minor elements were highest close to the bottom. Seasonally varying microbiota was an important part of the seston in surface waters. None of the seston C:N:P (molar) annual means at specific depths corresponded to the Redfield ratio (106:16:1). At 5 m, annual means of N/P and C/N were 8.4 and 6.5, respectively, while at depth (50–1220 m) N/P were on scale 3 times higher (21–31) and C/N 3 times lower (1.6–2.6), suggesting alternative N-sequestration mechanisms. Overall, correlations between C-Ca and C-S indicate a strong influence from calcite (CaCO3) and organosulfur producing microorganisms, while correlations between particulate Si and Mg–K–Ca–O at depth are consistent with clay and sinking diatom frustules. Mn concentrations increased strongly towards the bottom, likely from resuspension of MnO2 rich sediments and clay particles. Based on seston concentrations, we arrived at the following stoichiometric relationship: C55N16P1Si3.6Ca3.4O16Fe0.74Mn0.51Zn0.33S0.21Cu0.08Cl1.7Na0.68Mg0.71K0.37, although rarely measured, such information is a prerequisite for evaluating environmental impact on coastal ecosystems, biogeochemical cycling, pollution risk analysis and monitoring guidelines.

Funder

FP7 Ideas: European Research Council

Institute Of Marine Research

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3