Bison and cattle grazing increase soil nitrogen cycling in a tallgrass prairie ecosystem

Author:

Anguiano Nicholas VegaORCID,Freeman Kiona M.,Figge Janaye D.ORCID,Hawkins Jaide H.,Zeglin Lydia H.ORCID

Abstract

AbstractNitrogen (N) is a necessary element of soil fertility and a limiting nutrient in tallgrass prairie but grazers like bison and cattle can also recycle N. Bison and cattle impact the nitrogen (N) cycle by digesting forage that is consumed, and recycled back to the soil in a more available forms stimulating soil microbial N cycling activities. Yet we do not know how both grazers comparatively affect N cycling in tallgrass prairie. Thus, we investigated if bison and cattle had similar impacts on N cycling in annually burned tallgrass prairie relative to ungrazed conditions over a 3-year period (2020–2022) at the Konza Prairie Biological Station. We examined: soil pH, soil water content, mineralized N, nitrification potential, denitrification potential and extracellular enzyme assays. Interannual variability in precipitation controlled soil water and N cycling microbial activities but grazing effects had a stronger influence on N cycling. We found significant differences and increased soil pH, nitrification and denitrification potential and less N limitation in bison vs cattle grazed soils where bison grazed soils exhibited faster N cycling. Differences between the grazers may be attributed to the different management of bison and cattle as both can impact N cycling. Overall, these data provide some evidence that bison and cattle affect N cycling differently at this study site, and improve the ecological understanding of grazer impacts on N cycling dynamics within the tallgrass prairie ecosystem.

Funder

Directorate for Biological Sciences

Grassland Heritage Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3