DOM in the long arc of environmental science: looking back and thinking ahead

Author:

McDowell William H.ORCID

Abstract

AbstractDissolved organic matter (DOM) is a heterogeneous mixture of organic compounds that is produced through both microbial degradation and abiotic leaching of solid phase organic matter, and by a wide range of metabolic processes in algae and higher plants. DOM is ubiquitous throughout the hydrologic cycle and plays an important role in watershed management for drinking water supply as well as many aspects of aquatic ecology and geochemistry. Due to its wide-ranging effects in natural waters and analytical challenges, the focal research questions regarding DOM have varied since the 1920s. A standard catchment-scale model has emerged to describe the environmental controls on DOM concentrations. Modest concentrations of DOM are found in atmospheric deposition, large increases occur in throughfall and shallow soil flow paths, and variable concentrations in surface waters occur largely as a result of the extent to which hydrologic flow paths encounter deeper mineral soils, wetlands or shallow organic-rich riparian soils. Both production and consumption of DOM occur in surface waters but appear to frequently balance, resulting in relatively constant concentrations with distance downstream in most streams and rivers. Across biomes the concentration and composition of DOM in flowing waters is driven largely by soil processes or direct inputs to channels, but high levels can be found in streams and rivers from the tropics to the poles. Seven central challenges and opportunities in the study of DOM should frame ongoing research. These include maintaining or establishing long-term records of changes in concentrations and fluxes over time, capitalizing on the use of sensors to describe short-term DOM dynamics in aquatic systems, integrating the full carbon cycle into understanding of watershed and aquatic DOM dynamics, understanding the role of DOM in evasion of greenhouse gases from inland waters, unraveling the enigma of dissolved organic nitrogen, documenting gross versus net DOM fluxes, and moving beyond an emphasis on functional ecological significance to understanding the evolutionary significance of DOM in a wide range of environments.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3