Drought effects on soil greenhouse gas fluxes in a boreal and a temperate forest

Author:

Gillespie L. M.ORCID,Kolari P.ORCID,Kulmala L.ORCID,Leitner S. M.ORCID,Pihlatie M.ORCID,Zechmeister-Boltenstern S.ORCID,Díaz-Pinés E.ORCID

Abstract

AbstractChanging water regimes (e.g. drought) have unknown long-term consequences on the stability and resilience of soil microorganisms who determine much of the carbon and nitrogen exchange between the biosphere and atmosphere. Shifts in their activity could feedback into ongoing climate change. In this study, we explored soil drought effects on soil greenhouse gas (GHG; CO2, CH4, N2O) fluxes over time in two sites: a boreal, coniferous forest in Finland (Hyytiälä) and a temperate, broadleaf forest in Austria (Rosalia). Topsoil moisture and topsoil temperature data were used to identify soil drought events, defined as when soil moisture is below the soil moisture at the permanent wilting point. Data over multiple years from automated GHG flux chambers installed on the forest floor were then analyzed using generalized additive models (GAM) to study whether GHG fluxes differed before and after drought events and whether there was an overall, multiyear temporal trend. Results showed CO2 and N2O emissions to be more affected by drought and long-term trends at Hyytiälä with increased CO2 emission and decreased N2O emissions both following drought and over the entire measurement period. CH4 uptake increased at both sites both during non-drought periods and as an overall, multiyear trend and was predominantly affected by soil moisture dynamics. Multiyear trends also suggest an increase in soil temperature in the boreal forest and a decrease in soil moisture in the temperate forest. These findings underline forests as an important sink for CH4, possibly with an increasing rate in a future climate.

Funder

Horizon 2020

Austrian climate research program

Österreichischen Akademie der Wissenschaften

AXA Research Fund

austrian climate research program

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3