Size matters: biochemical mineralization and microbial incorporation of dicarboxylic acids in soil

Author:

Kashi Hamed,Loeppmann Sebastian,Herschbach Jennifer,Schink Carina,Imhof Wolfgang,Kouchaksaraee Reza Mohsenian,Dippold Michaela A.,Spielvogel Sandra

Abstract

AbstractThe transformation and turnover time of medium- to long-chain dicarboxylic acids (DCA) in soil is regulated by microbial uptake and mineralization. However, the chain length of n-alkyl lipids may have a remarkable influence on its microbial utilization and mineralization and therefore on the formation of stable soil organic carbon from e.g. leave- needle- and root-derived organic matter during decomposition. To investigate their size dependent mineralization and microbial incorporation, four DCA of different chain lengths (12–30 carbon atoms), that were 13C labeled at each of their terminal carboxylic groups, were applied to the Ah horizon of a Fluvic Gleysol. Incorporation of 13C into CO2 and in distinct microbial groups classified by phospholipid fatty acid (PLFA) analysis was investigated. Mineralization of DCA and incorporation into PLFA decreased with increasing chain length, and the mineralization rate was highest during the first days of incubation. Half-life time of DCA carbon in soil increased from 7.6 days for C12 DCA to 86.6 days for C18 DCA and decreased again to 46.2 days for C22 DCA, whereas C30 DCA had the longest half-life time. Rapid and efficient uptake of C12 DCA as an intact molecule was observable. Gram-negative bacteria incorporated higher amounts of DCA-derived 13C compared to other microbial groups, especially compared to actinomycetes and fungi during the first phase of incubation. However, the incorporation of C12 DCA derived 13C into the PLFA of actinomycetes, and fungi increased steadily during the entire incubation time, suggesting that those groups take up the 13C label from necromass of bacteria that used the C12 DCA for formation of their lipids before.

Funder

Deutsche Forschungsgemeinschaft

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3