Minor effects of no-till treatment on GHG emissions of boreal cultivated peat soil

Author:

Honkanen HenriORCID,Kekkonen Hanna,Heikkinen Jaakko,Kaseva Janne,Lång Kristiina

Abstract

AbstractThe greenhouse gas (GHG) emissions of spring cereal monoculture under long-term conventional tillage (CT) and no-till (NT) treatment established in 2018 were measured in a peatland in Southwestern Finland during the period 2018–2021. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes were measured with chambers approximately every two weeks throughout the period under study. Net ecosystem exchange was measured during the growing seasons, and hourly ecosystem respiration (ER) and gross photosynthesis (GP) were modelled with empirical models. Across the whole period, annual emissions were 6.8 ± 1.2 and 5.7 ± 1.2 Mg CO2–C ha −1 yr−1 (net ecosystem carbon balance), 8.8 ± 2.0 and 7.1 ± 2.0 kg N2O–N ha−1 yr−1, and − 0.43 ± 0.31 and − 0.40 ± 0.31 kg CH4-C ha−1 yr−1 for CT and NT, respectively. The global warming potential was lower in NT (p = 0.045), and it ranged from 26 to 34 Mg CO2 eq. ha−1 yr−1 in CT and from 19 to 31 Mg CO2 eq. ha−1 yr−1 in NT. The management effect on the rates of single GHGs was not consistent over the years. Higher GP was found in CT in 2019 and in NT in 2020. Differences in ER between treatments occurred mostly outside the growing season, especially after ploughing, but the annual rates did not differ statistically. NT reduced the N2O emissions by 31% compared to CT in 2020 (p = 0.044) while there were no differences between the treatments in other years. The results indicate that NT may have potential to reduce slightly CO2 and N2O emissions from cultivated peat soil, but the results originate from the first three years after a management change from CT to NT, and there is still a lack of long-term results on NT on cultivated peat soils.

Funder

Academy of Finland

Maa- ja Vesitekniikan Tuki Ry

Natural Resources Institute Finland

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3