Contribution of marine macrophytes to pCO2 and DOC variations in human-impacted coastal waters

Author:

Watanabe KentaORCID,Tokoro TatsukiORCID,Moki HirotadaORCID,Kuwae TomohiroORCID

Abstract

AbstractCarbon cycles in coastal waters are highly sensitive to human activities and play important roles in global carbon budgets. CO2 sink–source behavior is regulated by spatiotemporal variations in net biological productivity, but the contribution of macrophyte habitats including macroalgae aquaculture to atmospheric CO2 removal has not been well quantified. We investigated the variations in the carbonate system and dissolved organic carbon (DOC) in human-impacted macrophyte habitats and analyzed the biogeochemical drivers for the variations of these processes. Cultivated macroalgal metabolism (photosynthesis, respiration, calcification, and DOC release) was quantified by in situ field-bag experiments. Cultivated macroalgae took up dissolved inorganic carbon (DIC) (16.2–439 mmol-C m−2 day−1) and released DOC (1.2–146 mmol-C m−2 day−1). We estimated that seagrass beds and macroalgae farming contributed 0.8 and 0.4 mmol-C m−2 day−1 of the in situ total CO2 removal (5.7 and 6.7 mmol-C m−2 day−1, respectively) during their growing period in a semi-enclosed embayment but efficient water exchange (i.e., short residence time) in an open coastal area precluded detection of the contribution of macrophyte habitats to the CO2 removal. Although hydrological processes, biological metabolism, and organic carbon storage processes would contribute to the net CO2 sink–source behavior, our analyses distinguished the contribution of macrophytes from other factors. Our findings imply that macroalgae farming, in addition to restoring and creating macrophyte habitats, has potential for atmospheric CO2 removal.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3