Seasonal measurements of the nitrogenous osmolyte glycine betaine in marine temperate coastal waters

Author:

Airs Ruth L.ORCID,Beale Rachael,Polimene LucaORCID,Chen YinORCID,Mausz Michaela A.ORCID,Scanlan David J.ORCID,Widdicombe Claire E.ORCID,Tarran Glen A.ORCID,Woodward E. Malcolm S.ORCID,Harris Carolyn,McEvoy AndreaORCID

Abstract

AbstractGlycine betaine (GBT) is a nitrogenous osmolyte ubiquitous throughout the marine environment. Despite its widespread occurrence and significance in microbial cycling, knowledge of the seasonality of this compound is lacking. Here, we present a seasonal dataset of GBT concentrations in marine suspended particulate material. Analysing coastal waters in the Western English Channel, GBT peaked in summer and autumn but did not follow the observed maxima in total phytoplankton biomass or chlorophyll a. Instead, we found evidence that GBT concentrations were associated with specific phytoplankton groups or species, particularly in the summer when GBT correlated with dinoflagellate biomass. In contrast, autumn maxima corresponded with a period of rapidly changing salinity and nutrient availability, with potential contributions from some phytoplankton species and Harpacticoid copepods. This suggests distinct environmental drivers for different periods of the GBT seasonality. Building on evidence that GBT and dinoflagellate biomass peak in summer, concomitantly with low nutrients, we propose that GBT positively affects dinoflagellate fitness, allowing them to outcompete other plankton when inorganic nutrients are depleted. By using this assumption, we improved the performance of a marine ecosystem model to reproduce the observed increase in dinoflagellates biomass in the transition from spring to summer. This work sheds light on the interplay between phytoplankton succession, competitive advantage and changing environmental factors relevant to climate change. It paves the way for future multidisciplinary research aiming to understand the importance of dinoflagellates in key coastal ecosystems and their potential significance for methylamine production, compounds relevant for particle growth in atmospheric chemistry.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3