Abstract
AbstractIn Germany, emissions from drained organic soils contributed approximately 53.7 Mio. t of carbon dioxide equivalents (CO2-eq) to the total national greenhouse gas (GHG) emissions in 2021. In addition to restoration measures, shifting management practices, rewetting, or using peatlands for paludiculture is expected to significantly reduce GHG emissions. The effects of climate change on these mitigation measures remains to be tested. In a 2017 experimental field study on agriculturally used grassland on organic soil, we assessed the effects of rewetting and of predicted climate warming on intensive grassland and on extensively managed sedge grassland (transplanted Carex acutiformis monoliths). The testing conditions of the two grassland types included drained versus rewetted conditions (annual mean water table of − 0.13 m below soil surface), ambient versus warming conditions (annual mean air temperature increase of + 0.8 to 1.3 °C; use of open top chambers), and the combination of rewetting and warming. We measured net ecosystem exchange of CO2, methane and nitrous oxide using the closed dynamic and static chamber method. Here, we report the results on the initial year of GHG measurements after transplanting adult Carex soil monoliths, including the controlled increase in water level and temperature. We observed higher N2O emissions than anticipated in all treatments. This was especially unexpected for the rewetted intensive grasslands and the Carex treatments, but largely attributable to the onset of rewetting coinciding with freeze–thaw cycles. However, this does not affect the overall outcomes on mitigation and adaptation trends. We found that warmer conditions increased total GHG emissions of the drained intensive grassland system from 48.4 to 66.9 t CO2-eq ha−1 year−1. The shift in grassland management towards Carex paludiculture resulted in the largest GHG reduction, producing a net cooling effect with an uptake of 11.1 t CO2-eq ha−1 year−1. Surprisingly, we found that this strong sink could be maintained under the simulated warming conditions ensuing an emission reduction potential of − 80 t CO2-eq ha−1 year−1. We emphasize that the results reflect a single initial measurement year and do not imply the permanence of the observed GHG sink function over time. Our findings affirm that rewetted peatlands with adapted plant species could sustain GHG mitigation and potentially promote ecosystem resilience, even under climate warming. In a warmer world, adaptation measures for organic soils should therefore include a change in management towards paludiculture. Multi-year studies are needed to support the findings of our one-year experiment. In general, the timing of rewetting should be considered carefully in mitigation measures.
Funder
Bayerisches Staatsministerium für Umwelt und Verbraucherschutz
Hochschule Weihenstephan-Triesdorf
Publisher
Springer Science and Business Media LLC
Reference108 articles.
1. Abel S, Couwenberg J, Dahms T, Joosten H (2013) The Database of Potential Paludiculture Plants (DPPP) and results for Western Pomerania. Plant Ecol Divers 130(3–4):219–228
2. Geophysical monograph series;AJ Baird,2009
3. Bechtold M, Tiemeyer B, Laggner A, Leppelt T, Frahm E, Belting S (2014) Largescale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling. Hydrol Earth Syst Sci 18:3319–3339. https://doi.org/10.5194/hess-18-3319-2014
4. Blain D, Murdiyarso D, Couwenberg J, Nagata O, Renou-Wilson F, Sirin A, Strack M, Tuittila E-S, Wilson D (2014) Rewetted organic soils. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG (eds) 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. IPCC, Geneva
5. BMEL (2020) Federal Ministry of Food and Agriculture: agriculture and climate change mitigation. https://www.bmel.de/EN/topics/farming/climate-stewardship/agriculture-climate-change-mitigation.html
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献