Assessment of Machine Learning Algorithms for Land Cover Classification in a Complex Mountainous Landscape

Author:

Amin GomalORCID,Imtiaz Iqra,Haroon Ehsan,Saqib Najum us,Shahzad Muhammad ImranORCID,Nazeer MajidORCID

Abstract

AbstractMapping land cover (LC) in mountainous regions, such as the Gilgit-Baltistan (GB) area of Pakistan, presents significant challenges due to complex terrain, limited data availability, and accessibility constraints. This study addresses these challenges by developing a robust, data-driven approach to classify LC using high-resolution Sentinel-2 (S-2) satellite imagery from 2019 within Google Earth Engine (GEE). The research evaluated the performance of various machine learning (ML) algorithms, including classification and regression tree (CART), maximum entropy (gmoMaxEnt), minimum distance (minDistance), support vector machine (SVM), and random forest (RF), without extensive hyperparameter tuning. Additionally, ten different scenarios based on various band combinations of S-2 data were used as input for running the ML models. The LC classification was performed using 2759 sample points, with 70% for training and 30% for validation. The results indicate that the RF algorithm outperformed all other classifiers under scenario S1 (using 10 bands), achieving an overall accuracy (OA) of 0.79 and a kappa coefficient of 0.76. The final RF-based LC mapping shows the following percentage distribution: barren land (46.7%), snow cover (22.9%), glacier (7.9%), grasses (7.2%), water (4.7%), wetland (2.9%), built-up (2.7%), agriculture (1.9%), and forest (1.2%). It is suggested that the best identified RF classifier within the GEE environment should be used for advanced multi-source data image classification with hyperparameter tuning to increase OA. Additionally, it is suggested to build the capacity of various stakeholders in GB for better monitoring of LC changes and resource management using geospatial big data.

Funder

Hong Kong Polytechnic University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3