Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Reference37 articles.
1. Audebert N, Boulch A, Randrianarivo H, Le Saux B, Ferecatu M, Lefèvre S, Marlet R (2017) Deep learning for urban remote sensing, 2017 Joint Urban Remote Sensing Event (JURSE), Dubai. pp 1–4.
https://doi.org/10.1109/JURSE.2017.7924536
2. Belgiu M, Drăguţ L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31.
https://doi.org/10.1016/j.isprsjprs.2016.01.011
3. Breiman L (2001) Random forests. Mach Learn 45(1):5–32.
https://doi.org/10.1023/A:1010933404324
4. Casalegno S, Anderson K, Hancock S, Gaston KJ (2017) Improving models of urban greenspace: from vegetation surface cover to volumetric survey, using waveform laser scanning. Methods Ecol Evol 8:1443–1452.
https://doi.org/10.1111/2041-210X.12794
5. EEA European Environment Agency (2015) Green infrastructure: better living through nature-based solutions.
https://www.eea.europa.eu/articles/green-infrastructure-better-living-through
. Accessed 18 Oct 2018
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献