Abstract
AbstractWith the development of mobile positioning technology, a large amount of mobile trajectory data has been generated. Therefore, to store, process and mine trajectory data in a better way, trajectory data simplification is imperative. Current trajectory data simplification methods are either based on spatiotemporal features or semantic features, such as road network structure, but they do not consider semantic features of a trajectory stop. To overcome this limitation, this study presents a trajectory segmentation simplification method based on stop features. The proposed method first extracts the stop feature of a trajectory, then divides the trajectory into move segments and stop segments based on the stop features, and finally simplifies the obtained segments. The proposed method is verified by experiments on personal trajectory data and taxi trajectory data. Compared with the classic spatiotemporal simplification method, the proposed method has higher spatiotemporal and semantic accuracy under different simplification scales. The proposed method is especially suitable for trajectory data with more stop features.
Funder
national natural science foundation of china
chuzhou university science foundation
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献