Predicting building energy consumption in urban neighborhoods using machine learning algorithms

Author:

Jiang Qingrui,Huang Chenyu,Wu Zhiqiang,Yao Jiawei,Wang Jinyu,Liu Xiaochang,Qiao Renlu

Abstract

AbstractAssessing building energy consumption in urban neighborhoods at the early stages of urban planning assists decision-makers in developing detailed urban renewal plans and sustainable development strategies. At the city-level, the use of physical simulation-based urban building energy modeling (UBEM) is too costly, and data-driven approaches often are hampered by a lack of available building energy monitoring data. This paper combines a simulation-based approach with a data-driven approach, using UBEM to provide a dataset for machine learning and deploying the trained model for large-scale urban building energy consumption prediction. Firstly, we collected 18,789 neighborhoods containing 248,938 buildings in the Shanghai central area, of which 2,702 neighborhoods were used for UBEM. Simultaneously, building functions were defined by POI data and land use data. We used 14 impact factors related to land use and building morphology to define each neighborhood. Next, we compared the performance of six ensemble learning methods modeling impact factors with building energy consumption and used SHAP to explain the best model; we also filtered out the features that contributed the most to the model output to reduce the model complexity. Finally, the balanced regressor that had the best prediction accuracy with the minimum number of features was used to predict the remaining urban neighborhoods in the Shanghai central area. The results show that XGBoost achieves the best performance. The balanced regressor, constructed with the 9 most contributing features, predicted the building rooftop photovoltaics potential, total load, cooling load, and heating load with test set accuracies of 0.956, 0.674, 0.608, and 0.762, respectively. Our method offers an 85.5%-time advantage over traditional methods, with only a maximum of 22.75% of error.

Funder

The International Knowledge Centre for Engineering Sciences and Technology (IKCEST) under the Auspices of UNESCO

the National Natural Science Foundation of China

Key Technologies Research and Development Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3