Overexpression-Induced α-Synuclein Brain Spreading

Author:

Pinto-Costa Rita,Harbachova Eugenia,La Vitola Pietro,Di Monte Donato A.ORCID

Abstract

AbstractInterneuronal transfer of pathological α-synuclein species is thought to play an important role in the progressive advancement of Lewy pathology and increasing severity of clinical manifestations in Parkinson’s and other diseases commonly referred to as synucleinopathies. Pathophysiological conditions and mechanisms triggering this trans-synaptic spreading bear therefore significant pathogenetic implications but have yet to be fully elucidated. In vivo experimental models support the conclusion that increased expression of intraneuronal α-synuclein can itself induce protein spreading throughout the brain as well as from the brain to peripheral tissues. For example, overexpression of α-synuclein targeted to the rodent dorsal medulla oblongata results in its transfer and accumulation into recipient axons innervating this brain region; through these axons, α-synuclein can then travel caudo-rostrally and reach other brain sites in the pons, midbrain, and forebrain. When protein overexpression is induced in the rodent midbrain, long-distance α-synuclein spreading can be followed over time; spreading-induced α-synuclein accumulation affects lower brain regions, including the dorsal motor nucleus of the vagus, proceeds through efferent axons of the vagus nerve, and is ultimately detected within vagal motor nerve endings in the gastric wall. As discussed in this review, animal models featuring α-synuclein overexpression not only support a relationship between α-synuclein burden and protein spreading but have also provided important clues on conditions/mechanisms capable of promoting interneuronal α-synuclein transfer. Intriguing findings include the relationship between neuronal activity and protein spreading and the role of oxidant stress in trans-synaptic α-synuclein mobility.

Funder

Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE) in der Helmholtz-Gemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Neurology (clinical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3