A robust method to date recessions and compute output gaps: the Portuguese case

Author:

Assunção João B.,Fernandes Pedro AfonsoORCID

Abstract

AbstractThe application of the Hodrick-Prescott (HP) and other linear filters to remove trend and extract business cycles in macroeconomic time series is a common practice despite its limitations, namely, in signaling recessions. Median filters and other nonlinear techniques can perform better by accommodating sharp but fundamental changes in the growth trend and passing only the relevant information to the cycle component, a possible measure of the output gap of an economy. An application to the Portuguese relevant macroeconomic series confirmed the robustness of nonlinear filters in signaling the recessions and recoveries. In particular, the Mosheiov-Raveh (MR) filter estimates piecewise trend growth paths that naturally date the specific periods of the Portuguese economy since 1977.

Funder

Fundação para a Ciência e Tecnologia

Universidade Católica Portuguesa

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Assunção JB, Fernandes PA (2022) Robust filtering with quantile regression. NECEP Research Papers 2. https://clsbe.lisboa.ucp.pt/cea/necep. Accessed 1 May 2022

2. Baxter M, King RG (1999) Measuring business cycles: approximate band-pass filters for economic time series. Rev Econ Stat 81(4):575–593

3. Bry B, Boschan C (1971) Cyclical analysis of time series: selected procedures and computer programs. National Bureau of Economic Research, New York. https://www.nber.org/books-and-chapters/cyclical-analysis-time-series-selected-procedures-and-computer-programs. Accessed 30 Dec 2022

4. Canova F (1998) Detrending and business cycle facts. J Monet Econ 41:475–512. https://doi.org/10.1016/S0304-3932(98)00006-3

5. Charnes A, Cooper WW, Fergunson RO (1955) Optimal estimation of executive compensation by linear programming. Manage Sci 1:138–151

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3