Normofractionated irradiation and not temozolomide modulates the immunogenic and oncogenic phenotype of human glioblastoma cell lines

Author:

Schatz Julia,Ladinig Alexandra,Fietkau Rainer,Putz Florian,Gaipl Udo S.ORCID,Frey Benjamin,Derer Anja

Abstract

Abstract Purpose Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor, with an overall poor prognosis after diagnosis. Conventional treatment includes resection, chemotherapy with temozolomide (TMZ), and concomitant radiotherapy (RT). The recent success of immunotherapy approaches in other tumor entities, particularly with immune checkpoint inhibitors, could not be clinically transferred to GBM treatment so far. Therefore, preclinical analyses of the expression of both immune-suppressive and immune-stimulatory checkpoint molecules following treatment of human glioblastoma cells with RT and/or temozolomide is needed to design feasible radio(chemo)immunotherapy trials for GBM in the future. Methods Five human glioblastoma cell lines (H4, HROG-06, U118, U138, U251) were analyzed regarding their clonogenic survival and cell death forms after chemotherapy (CT) with TMZ and/or normofractionated RT (5 × 2 Gy) via multicolor flow cytometry. Further, the tumor cell surface expression of immune-activating (OX40L, CD137L, CD70, and ICOSL) and immune-suppressive (PD-L1, PD-L2, HVEM) checkpoint molecules and of an oncogenic molecule (EGFR) were measured via multicolor flow cytometry after CT and RT alone or after RCT. Results Normofractionated RT and not TMZ was the trigger of induction of predominantly necrosis in the glioblastoma cells. Notably, clonogenicity did not correlate with cell death induction by RT. The basal expression level of immune-suppressive PD-L1, PD-L2, and HVEM varied in the analyzed glioblastoma cells. RT, but not TMZ, resulted in a significant upregulation of PD-L1 and PD-L2 in all tumor cells investigated. Also, the expression of HVEM was increased after RT in most of the GBM cell lines. In contrast, normofractionated RT individually modulated expression of the stimulating immune checkpoint molecules CD70, CD137L, OX40L, and ICOSL1. The oncogenic factor EGFR was significantly increased by irradiation in all examined cell lines, albeit to a different extent. None of the investigated molecules were downregulated after the treatments. Conclusion Normofractionated radiotherapy modulates the immunogenic as well as the oncogenic phenotype of glioblastoma cells, partly individually. Therefore, not only PD-L1 and PD-L2, but also other immunogenic molecules expressed on the surface of glioblastoma cells could serve as targets for immune checkpoint blockade in combination with RT in the future.

Funder

Deutsche Forschungsgemeinschaft

Universitätsklinikum Erlangen

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3